Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 260
1.
J Cell Physiol ; 239(5): e31251, 2024 May.
Article En | MEDLINE | ID: mdl-38634445

Krüppel-like factor 13 (KLF13), a zinc finger transcription factor, is considered as a potential regulator of cardiomyocyte differentiation and proliferation during heart morphogenesis. However, its precise role in the dedifferentiation of vascular smooth muscle cells (VSMCs) during atherosclerosis and neointimal formation after injury remains poorly understood. In this study, we investigated the relationship between KLF13 and SM22α expression in normal and atherosclerotic plaques by bioanalysis, and observed a significant increase in KLF13 levels in the atherosclerotic plaques of both human patients and ApoE-/- mice. Knockdown of KLF13 was found to ameliorate intimal hyperplasia following carotid artery injury. Furthermore, we discovered that KLF13 directly binds to the SM22α promoter, leading to the phenotypic dedifferentiation of VSMCs. Remarkably, we observed a significant inhibition of platelet-derived growth factor BB-induced VSMCs dedifferentiation, proliferation, and migration when knocked down KLF13 in VSMCs. This inhibitory effect of KLF13 knockdown on VCMC function was, at least in part, mediated by the inactivation of p-AKT signaling in VSMCs. Overall, our findings shed light on a potential therapeutic target for treating atherosclerotic lesions and restenosis after vascular injury.


Cell Dedifferentiation , Cell Proliferation , Muscle Proteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Promoter Regions, Genetic , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Promoter Regions, Genetic/genetics , Cell Proliferation/genetics , Muscle Proteins/genetics , Muscle Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Signal Transduction , Phenotype , Carotid Artery Injuries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/metabolism , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Neointima/metabolism , Neointima/pathology , Neointima/genetics , Cells, Cultured , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Cell Mol Biol Lett ; 29(1): 2, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38172726

Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.


Carotid Artery Injuries , Vascular System Injuries , Animals , Rats , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Fibromodulin/metabolism , Hyperplasia/complications , Hyperplasia/metabolism , Hyperplasia/pathology , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/pathology , Neointima/prevention & control , Rats, Sprague-Dawley , RNA/metabolism , RNA, Transfer/metabolism , Vascular Remodeling , Vascular System Injuries/metabolism
3.
BMC Cardiovasc Disord ; 23(1): 239, 2023 05 06.
Article En | MEDLINE | ID: mdl-37149580

BACKGROUND: Restenosis after percutaneous coronary intervention (PCI) limits therapeutic revascularization. Neuropeptide Y (NPY), co-stored and co-released with the sympathetic nervous system, is involved in this process, but its exact role and underlying mechanisms remain to be fully understood. This study aimed to investigate the role of NPY in neointima formation after vascular injury. METHODS: Using the left carotid arteries of wild-type (WT, NPY-intact) and NPY-deficient (NPY-/-) mice, ferric chloride-mediated carotid artery injury induced neointima formation. Three weeks after injury, the left injured carotid artery and contralateral uninjured carotid artery were collected for histological analysis and immunohistochemical staining. RT-qPCR was used to detect the mRNA expression of several key inflammatory markers and cell adhesion molecules in vascular samples. Raw264.7 cells were treated with NPY, lipopolysaccharide (LPS), and lipopolysaccharide-free, respectively, and RT-qPCR was used to detect the expression of these inflammatory mediators. RESULTS: Compared with WT mice, NPY-/- mice had significantly reduced neointimal formation three weeks after injury. Mechanistically, immunohistochemical analysis showed there were fewer macrophages and more vascular smooth muscle cells in the neointima of NPY-/- mice. Moreover, the mRNA expression of key inflammatory markers such as interleukin-6 (IL-6), transforming growth factor-ß1 (TGF-ß1), and intercellular adhesion molecule-1 (ICAM-1) was significantly lower in the injured carotid arteries of NPY-/- mice, compared to that in the injured carotid arteries of WT mice. In RAW264.7 macrophages, NPY significantly promoted TGF-ß1 mRNA expression under unactivated but not LPS-stimulated condition. CONCLUSIONS: Deletion of NPY attenuated neointima formation after artery injury, at least partly, through reducing the local inflammatory response, suggesting that NPY pathway may provide new insights into the mechanism of restenosis.


Carotid Artery Injuries , Neuropeptide Y , Percutaneous Coronary Intervention , Vascular System Injuries , Animals , Mice , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Neointima/pathology , Neuropeptide Y/genetics , RNA, Messenger , Transforming Growth Factor beta1/genetics , Vascular System Injuries/genetics , Vascular System Injuries/pathology
4.
Vascular ; 31(2): 392-401, 2023 Apr.
Article En | MEDLINE | ID: mdl-34958294

BACKGROUND: The functions of miR-17-5p in tumorigenesis have been explored. However, their functionalities in arterial endothelial cells (ECs) have not been investigated. Besides, the issue of vascular remodelling is barely addressed. OBJECTIVES: The study aimed to determine the effect of overexpression or inhibition of miR-17-5p on arterial endothelial cells' (ECs) function and vascular remodelling in vitro and the rat carotid arteries model. METHODS: Quantitative RT-PCR analysis was performed to examine the expression of miR-17-5p. Then, gain-of-function and loss-of-function approaches were employed to investigate the functional roles of miR-17-5p in cultured human coronary artery endothelial cells (HCAECs); further, TargetScan software analysis and luciferase reporter activity assay were performed to investigate the potential mechanism. Lastly, the results of the cell segment were verified in a rat carotid artery balloon injury model by Western blot analysis, measurement of the vascular cGMP level and plasma 8-iso-prostaglandin F2 (8-iso-PGF2) testing. Moreover, morphometric analysis was implemented to detect the re-endothelialization and neointimal formation in rat carotid artery after balloon injury. RESULTS: This study firstly found that miR-17-5p expression was upregulated in the injured vascular walls and highly expressive in ECs; overexpression of miR-17-5p inhibited HCAECs' proliferation and migration, whereas miR-17-5p knockdown strengthened its proliferative and migratory roles, influenced inflammatory response, through regulating VEGRA and VEGFR2. It was found that miR-17-5p bind to VEGFA and VEGFR2 at the 3'UTR. Next, downregulation of miR-17-5p promotes re-endothelialization, and attenuates neointimal formation as measured by the I/M ratio (0.63±0.05 vs 1.45±0.06, antagomiR-17-5p vs. Lenti-NC, p < 0.05). In addition, the functional recovery of the endothelium was also accelerated by miR-17-5p knockdown. CONCLUSION: Our study suggests that miR-17-5p is a feasible strategy for the selective modulation of endothelialization and vascular remodelling through regulating VEGFA and VEGFR2.


Carotid Artery Injuries , MicroRNAs , Humans , Rats , Animals , Endothelial Cells/metabolism , Vascular Remodeling , Cell Proliferation , Neointima/metabolism , Neointima/pathology , Carotid Artery Injuries/genetics , MicroRNAs/genetics
5.
J Cardiovasc Pharmacol ; 79(6): 914-924, 2022 06 01.
Article En | MEDLINE | ID: mdl-35266910

ABSTRACT: Cystic fibrosis transmembrane conductance regulator (CFTR) plays important roles in arterial functions and the fate of cells. To further understand its function in vascular remodeling, we examined whether CFTR directly regulates platelet-derived growth factor-BB (PDGF-BB)-stimulated vascular smooth muscle cells (VSMCs) proliferation and migration, as well as the balloon injury-induced neointimal formation. The CFTR adenoviral gene delivery was used to evaluate the effects of CFTR on neointimal formation in a rat model of carotid artery balloon injury. The roles of CFTR in PDGF-BB-stimulated VSMC proliferation and migration were detected by mitochondrial tetrazolium assay, wound healing assay, transwell chamber method, western blot, and qPCR. We found that CFTR expression was declined in injured rat carotid arteries, while adenoviral overexpression of CFTR in vivo attenuated neointimal formation in carotid arteries. CFTR overexpression inhibited PDGF-BB-induced VSMC proliferation and migration, whereas CFTR silencing caused the opposite results. Mechanistically, CFTR suppressed the phosphorylation of PDGF receptor ß, serum and glucocorticoid-inducible kinase 1, JNK, p38 and ERK induced by PDGF-BB, and the increased mRNA expression of matrix metalloproteinase-9 and MMP2 induced by PDGF-BB. In conclusion, our results indicated that CFTR may attenuate neointimal formation by suppressing PDGF-BB-induced activation of serum and glucocorticoid-inducible kinase 1 and the JNK/p38/ERK signaling pathway.


Carotid Artery Injuries , Muscle, Smooth, Vascular , Animals , Becaplermin/pharmacology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/pharmacology , Glucocorticoids/pharmacology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Proto-Oncogene Proteins c-sis/metabolism , Proto-Oncogene Proteins c-sis/pharmacology , Rats , Rats, Sprague-Dawley
6.
J Cell Sci ; 135(7)2022 04 01.
Article En | MEDLINE | ID: mdl-35297486

Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to collagen-activated platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism; they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Our carotid artery intimal injury model indicated that platelets adhered to injured blood vessels. In vitro, phosphorylated Pka (cAMP-dependent protein kinase) content was increased in aPMVs. We also found that aPMVs significantly reduced VSMC glycolysis and increased oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating phosphorylated PRKAA (α catalytic subunit of AMP-activated protein kinase) and phosphorylated FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the enhancement of cellular function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. We show that aPMVs can affect VSMC energy metabolism through the Pka-PRKAA-FoxO1 signaling pathway and this ultimately affects VSMC function, indicating that the shift in VSMC metabolic phenotype by aPMVs can be considered a potential target for the inhibition of hyperplasia. This provides a new perspective for regulating the abnormal activity of VSMCs after injury.


Carotid Artery Injuries , Muscle, Smooth, Vascular , AMP-Activated Protein Kinases/metabolism , Animals , Blood Platelets/metabolism , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Energy Metabolism , Humans , Hyperplasia/complications , Hyperplasia/metabolism , Hyperplasia/pathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/complications , Neointima/metabolism , Neointima/pathology
7.
Biochem Pharmacol ; 198: 114947, 2022 04.
Article En | MEDLINE | ID: mdl-35143753

Neointima formation is characterized by the proliferation of vascular smooth muscle cells (VSMC). Although lysine-specific demethylase 1 (LSD1) has critical functions in several diseases, its role in neointima formation remains to be clarified. In this study, we aimed to explore the crucial role of LSD1 on neointima formation using a carotid artery injury model in mice. We observed that aberrant LSD1 expression was increased in human and mouse stenotic arteries and platelet-derived growth factor-BB (PDGF-BB)-treated VSMC. Furthermore, LSD1 knockdown significantly mitigated neointima formation in vivo and inhibited PDGF-BB-induced VSMC proliferation in vitro. We further uncovered that LSD1 overexpression exhibited opposite phenotypes in vivo and in vitro. Finally, LSD1 knockdown inhibited VSMC proliferation by increasing p21 expression, which is associated with LSD1 mediated di-methylated histone H3 on lysine 4 (H3K4me2) modification. Taken together, our data suggest that LSD1 may be a potential therapeutic target for the treatment of neointima formation.


Carotid Artery Injuries , Histone Demethylases , Myocytes, Smooth Muscle , Neointima , Animals , Becaplermin/metabolism , Becaplermin/pharmacology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Lysine/metabolism , Mice , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism
8.
Cardiovasc Res ; 118(1): 316-333, 2022 01 07.
Article En | MEDLINE | ID: mdl-33135066

AIMS: Chronic kidney disease (CKD) is an independent risk factor for the development of coronary artery disease (CAD). For both, CKD and CAD, the intercellular transfer of microRNAs (miRs) through extracellular vesicles (EVs) is an important factor of disease development. Whether the combination of CAD and CKD affects endothelial function through cellular crosstalk of EV-incorporated miRs is still unknown. METHODS AND RESULTS: Out of 172 screened CAD patients, 31 patients with CAD + CKD were identified and matched with 31 CAD patients without CKD. Additionally, 13 controls without CAD and CKD were included. Large EVs from CAD + CKD patients contained significantly lower levels of the vasculo-protective miR-130a-3p and miR-126-3p compared to CAD patients and controls. Flow cytometric analysis of plasma-derived EVs revealed significantly higher numbers of endothelial cell-derived EVs in CAD and CAD + CKD patients compared to controls. EVs from CAD + CKD patients impaired target human coronary artery endothelial cell (HCAEC) proliferation upon incubation in vitro. Consistent with the clinical data, treatment with the uraemia toxin indoxyl sulfate (IS)-reduced miR-130a-3p levels in HCAEC-derived EVs. EVs from IS-treated donor HCAECs-reduced proliferation and re-endothelialization in EV-recipient cells and induced an anti-angiogenic gene expression profile. In a mouse-experiment, intravenous treatment with EVs from IS-treated endothelial cells significantly impaired endothelial regeneration. On the molecular level, we found that IS leads to an up-regulation of the heterogenous nuclear ribonucleoprotein U (hnRNPU), which retains miR-130a-3p in the cell leading to reduced vesicular miR-130a-3p export and impaired EV-recipient cell proliferation. CONCLUSION: Our findings suggest that EV-miR-mediated vascular intercellular communication is altered in patients with CAD and CKD, promoting CKD-induced endothelial dysfunction.


Carotid Arteries/metabolism , Carotid Artery Injuries/metabolism , Cell Communication , Cell Proliferation , Coronary Artery Disease/metabolism , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Renal Insufficiency, Chronic/metabolism , Adult , Aged , Aged, 80 and over , Animals , Carotid Arteries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Coronary Vessels/drug effects , Coronary Vessels/pathology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/pathology , Extracellular Vesicles/drug effects , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Female , Humans , Indican/toxicity , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Middle Aged , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
9.
Article En | MEDLINE | ID: mdl-34610470

Phospholipase D (PLD) generates the signaling lipid phosphatidic acid (PA) and has been known to mediate proliferation signal in vascular smooth muscle cells (VSMCs). However, it remains unclear how PLD contributes to vascular diseases. VSMC proliferation directly contributes to the development and progression of cardiovascular disease, such as atherosclerosis and restenosis after angioplasty. Using the mouse carotid artery ligation model, we find that deletion of Pld1 gene inhibits neointima formation of the injuried blood vessels. PLD1 deficiency reduces the proliferation of VSMCs in both injured artery and primary cultures through the inhibition of ERK1/2 and AKT signals. Immunohistochemical staining of injured artery and flow cytometry analysis of VSMCs shows a reduction of the levels of reactive oxygen species (ROS) in Pld1-/- VSMCs. An increase of intracellular ROS by hydrogen peroxide stimulation restored the reduced activities of ERK and AKT in Pld1-/- VSMCs, whereas a reduction of ROS by N-acetyl-l-cysteine (NAC) scavenger lowered their activity in wild-type VSMCs. These results indicate that PLD1 plays a critical role in neointima, and that PLD1 mediates VSMC proliferation signal through promoting the production of ROS. Therefore, inhibition of PLD1 may be used as a therapeutic approach to suppress neointimal formation in atherosclerosis and restenosis after angioplasty.


Atherosclerosis/genetics , Carotid Artery Injuries/genetics , Neointima/genetics , Phospholipase D/genetics , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Injuries/pathology , Disease Models, Animal , Humans , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/metabolism , Neointima/pathology , Reactive Oxygen Species/metabolism
10.
Cardiovasc Res ; 118(2): 622-637, 2022 01 29.
Article En | MEDLINE | ID: mdl-33576766

AIMS: Von Willebrand factor (VWF) is a plasma glycoprotein involved in primary haemostasis, while also having additional roles beyond haemostasis namely in cancer, inflammation, angiogenesis, and potentially in vascular smooth muscle cell (VSMC) proliferation. Here, we addressed how VWF modulates VSMC proliferation and investigated the underlying molecular pathways and the in vivo pathophysiological relevance. METHODS AND RESULTS: VWF induced proliferation of human aortic VSMCs and also promoted VSMC migration. Treatment of cells with a siRNA against αv integrin or the RGT-peptide blocking αvß3 signalling abolished proliferation. However, VWF did not bind to αvß3 on VSMCs through its RGD-motif. Rather, we identified the VWF A2 domain as the region mediating binding to the cells. We hypothesized the involvement of a member of the LDL-related receptor protein (LRP) family due to their known ability to act as co-receptors. Using the universal LRP-inhibitor receptor-associated protein, we confirmed LRP-mediated VSMC proliferation. siRNA experiments and confocal fluorescence microscopy identified LRP4 as the VWF-counterreceptor on VSMCs. Also co-localization between αvß3 and LRP4 was observed via proximity ligation analysis and immuno-precipitation experiments. The pathophysiological relevance of our data was supported by VWF-deficient mice having significantly reduced hyperplasia in carotid artery ligation and artery femoral denudation models. In wild-type mice, infiltration of VWF in intimal regions enriched in proliferating VSMCs was found. Interestingly, also analysis of human atherosclerotic lesions showed abundant VWF accumulation in VSMC-proliferating rich intimal areas. CONCLUSION: VWF mediates VSMC proliferation through a mechanism involving A2 domain binding to the LRP4 receptor and integrin αvß3 signalling. Our findings provide new insights into the mechanisms that drive physiological repair and pathological hyperplasia of the arterial vessel wall. In addition, the VWF/LRP4-axis may represent a novel therapeutic target to modulate VSMC proliferation.


Atherosclerosis/metabolism , Cell Proliferation , Integrin alphaVbeta3/metabolism , LDL-Receptor Related Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , von Willebrand Factor/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Movement , Cells, Cultured , Hyperplasia , Integrin alphaVbeta3/genetics , LDL-Receptor Related Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/injuries , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neointima , Plaque, Atherosclerotic , Signal Transduction , Vascular System Injuries/genetics , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , von Willebrand Factor/genetics
11.
Arterioscler Thromb Vasc Biol ; 41(12): 2961-2973, 2021 12.
Article En | MEDLINE | ID: mdl-34670409

OBJECTIVE: Vascular smooth muscle cell (SMC) proliferation contributes to neointima formation following vascular injury. Circular RNA-a novel type of noncoding RNA with closed-loop structure-exhibits cell- and tissue-specific expression patterns. However, the role of circular RNA in SMC proliferation and neointima formation is largely unknown. The objective of this study is to investigate the role and mechanism of circSOD2 in SMC proliferation and neointima formation. Approach and Results: Circular RNA profiling of human aortic SMCs revealed that PDGF (platelet-derived growth factor)-BB up- and downregulated numerous circular RNAs. Among them, circSOD2, derived from back-splicing event of SOD2 (superoxide dismutase 2), was significantly enriched. Knockdown of circSOD2 by short hairpin RNA blocked PDGF-BB-induced SMC proliferation. Inversely, circSOD2 ectopic expression promoted SMC proliferation. Mechanistically, circSOD2 acted as a sponge for miR-206, leading to upregulation of NOTCH3 (notch receptor 3) and NOTCH3 signaling, which regulates cyclin D1 and CDK (cyclin-dependent kinase) 4/6. In vivo studies showed that circSOD2 was induced in neointima SMCs in balloon-injured rat carotid arteries. Importantly, knockdown of circSOD2 attenuated injury-induced neointima formation along with decreased neointimal SMC proliferation. CONCLUSIONS: CircSOD2 is a novel regulator mediating SMC proliferation and neointima formation following vascular injury. Therefore, circSOD2 could be a potential therapeutic target for inhibiting the development of proliferative vascular diseases.


Carotid Artery Injuries/genetics , Muscle, Smooth, Vascular/metabolism , Neointima/genetics , Superoxide Dismutase/genetics , Vascular Remodeling/genetics , Animals , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Male , Muscle, Smooth, Vascular/pathology , Neointima/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Superoxide Dismutase/biosynthesis
12.
Am J Physiol Heart Circ Physiol ; 321(5): H893-H904, 2021 11 01.
Article En | MEDLINE | ID: mdl-34559579

We have previously shown that several components of the RhoA signaling pathway control smooth muscle cell (SMC) phenotype by altering serum response factor (SRF)-dependent gene expression. Because our genome-wide analyses of chromatin structure and transcription factor binding suggested that the actin depolymerizing factor, destrin (DSTN), was regulated in a SMC-selective fashion, the goals of the current study were to identify the transcription mechanisms that control DSTN expression in SMC and to test whether it regulates SMC function. Immunohistochemical analyses revealed strong and at least partially SMC-selective expression of DSTN in many mouse tissues, a result consistent with human data from the genotype-tissue expression (GTEx) consortium. We identified several regulatory regions that control DSTN expression including a SMC-selective enhancer that was activated by myocardin-related transcription factor-A (MRTF-A), recombination signal binding protein for immunoglobulin κ-J region (RBPJ), and the SMAD transcription factors. Indeed, enhancer activity and endogenous DSTN expression were upregulated by RhoA and transforming growth factor-ß (TGF-ß) signaling and downregulated by inhibition of Notch cleavage. We also showed that DSTN expression was decreased in vivo by carotid artery injury and in cultured SMC cells by platelet-derived growth factor-BB (PDGF-BB) treatment. siRNA-mediated depletion of DSTN significantly enhanced MRTF-A nuclear localization and SMC differentiation marker gene expression, decreased SMC migration in scratch wound assays, and decreased SMC proliferation, as measured by cell number and cyclin-E expression. Taken together our data indicate that DSTN is a negative feedback inhibitor of RhoA/SRF-dependent gene expression in SMC that coordinately promotes SMC phenotypic modulation. Interventions that target DSTN expression or activity could serve as potential therapies for atherosclerosis and restenosis.NEW & NOTEWORTHY First, DSTN is selectively expressed in SMC in RhoA/SRF-dependent manner. Second, a SMC-selective enhancer just upstream of DSTN TSS harbors functional SRF, SMAD, and Notch/RBPJ binding elements. Third, DSTN depletion increased SRF-dependent SMC marker gene expression while inhibiting SMC migration and proliferation. Taken together, our data suggest that DSTN is a critical negative feedback inhibitor of SMC differentiation.


Actins/metabolism , Carotid Artery Injuries/metabolism , Cell Differentiation , Destrin/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Chemokine CXCL12/metabolism , Destrin/genetics , Disease Models, Animal , Feedback, Physiological , Gene Expression Regulation , Humans , Mice , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phenotype , Promoter Regions, Genetic , Rats , Rats, Wistar , Receptors, Notch/metabolism , Signal Transduction , Transcription, Genetic , rhoA GTP-Binding Protein/metabolism
13.
Cells ; 10(8)2021 08 08.
Article En | MEDLINE | ID: mdl-34440796

The purpose of this study is to investigate the role of platelet bone morphogenetic proteins (BMP)-4 during vascular inflammation and remodeling in a mouse model of carotid wire injury. Transgenic mice with a platelet-specific deletion of BMP-4 (BMP4Plt-/-) were generated. Intravital microscopy was performed to evaluate leukocyte adhesion to the vessel wall. Expression of adhesion molecules and chemokines were analyzed. Platelet-leukocyte aggregates (PLAs) were evaluated using flow cytometry. For carotid wire injury, BMP4Plt-/- mice were further crossed with LDLr-/- mice (BMP4Plt-/-/LDLr-/-) and fed with a high cholesterol diet for 2-weeks. Carotid wire injury was performed, and re-endothelialization and neointimal formation were evaluated. In comparison to the control mice, stimulation with TNFα resulted in fewer rolling and adherent leukocytes to the vessel wall in the BMP4Plt-/- mice. mRNA and protein expression of P-selectin and adhesion molecules were reduced in the aorta of the BMP4Plt-/- mice. In platelets from the BMP4Plt-/- mice, the expression of P-selectin was reduced, and fewer PLA formations were measured than in the control mice. Loss of platelet BMP-4 further prevented neointima formation after carotid wire injury. Endothelial regeneration after injury was decelerated in the BMP4Plt-/- mice, and confirmed in-vitro, where the deletion of platelet BMP-4 inhibited endothelial cell proliferation and migration. We demonstrate for the first time that platelet BMP-4 is involved during vascular inflammation and remodeling. This is partially mediated by the inhibition of platelet activation, reduced expression of adhesion molecules and inflammatory responses. Our findings identify platelet BMP-4 as a mediator of vascular inflammation in early atherosclerosis and restenosis.


Aorta/pathology , Blood Platelets/metabolism , Bone Morphogenetic Protein 4/metabolism , Carotid Artery Injuries/metabolism , Inflammation/metabolism , Neointima/metabolism , Animals , Bone Morphogenetic Protein 4/genetics , Carotid Artery Injuries/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression , Inflammation/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
14.
Stem Cell Res Ther ; 12(1): 387, 2021 07 07.
Article En | MEDLINE | ID: mdl-34233723

AIMS: Neointimal hyperplasia remains a major obstacle in vascular regeneration. Sca-1-positive progenitor cells residing within the vascular adventitia play a crucial role in the assemblage of vascular smooth muscle cell (VSMC) and the formation of the intimal lesion. However, the underlying mechanisms during vascular injury are still unknown. METHODS AND RESULTS: Aneointimal formation rat model was prepared by carotid artery injury using 2F-Forgaty. After vascular injury, Meox1 expressions time-dependently increased during the neointima formation, with its levels concurrently increasing in the adventitia, media, and neointima. Meox1 was highly expressed in the adventitia on the first day after vascular injury compared to the expression levels in the media. Conversely, by the 14th day post-injury, Meox1 was extensively expressed more in the media and neointima than the adventitia. Analogous to the change of Meox1 in injured artery, Sca-1+ progenitor cells increased in the adventitia wall in a time-dependent manner and reached peak levels on the 7th day after injury. More importantly, this effect was abolished by Meox1 knockdown with shRNA. The enhanced expression of SDF-1α after vascular injury was associated with the markedly enhanced expression levels of Sca1+ progenitor cell, and these levels were relatively synchronously increased within neointima by the 7th day after vascular injury. These special effects were abolished by the knockdown of Meox1 with shRNA and inhibition of CXCR4 by its inhibitor, AMD3100. Finally, Meox1 concurrently regulated SDF-1α expressions in VSMC via activating CDC42, and CDC42 inhibition abolished these effects by its inhibitor, ZCL278. Also, Meox1 was involved in activation of the CXCR4 expression of Sca-1+ progenitor cells by CDC42. CONCLUSIONS: Spatio-temporal model of Meox1 expression regulates theSca-1+progenitor cell migration during the formation of the neointima through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4.


Homeodomain Proteins/genetics , Neointima , Stem Cells , Transcription Factors/genetics , Animals , Carotid Artery Injuries/genetics , Cell Movement , Cells, Cultured , Chemokine CXCL12/genetics , Myocytes, Smooth Muscle , Rats , Receptors, CXCR4/genetics , cdc42 GTP-Binding Protein
15.
J Cardiovasc Pharmacol ; 77(6): 875-884, 2021 06 01.
Article En | MEDLINE | ID: mdl-34016842

ABSTRACT: MiRNAs play key roles in the proliferation of vascular smooth muscle cells (VSMCs). However, the roles and underlying mechanism of miRNAs in VSMCs are not fully understood. The aim of this study was to evaluate the role of miR-340 in the proliferation of VSMCs. The expression levels of miR-340 and von Hippel-Lindau tumor suppressor (VHL) in VSMCs induced by platelet-derived growth factor-BB or fetal bovine serum were measured by q-polymerase chain reaction. The effects of miR-340 and VHL on cell proliferation and invasion were evaluated by CCK-8 assay. Target gene prediction and screening as well as luciferase reporter assay were performed to verify the downstream target genes of miR-340. Western blotting was used to detect the protein expression levels of vascular endothelial growth factor and VHL. Our results showed that the miR-340 was upregulated in platelet-derived growth factor-BBor fetal bovine serum-induced VSMCs. In addition, overexpression of miR-340 promoted VSMCs proliferation and invasion. Moreover, VHL was found to be a potential target for miR-340 and upregulation of VHL-inhibited VSMCs proliferation. MiR-340 plays a critical role in VSMC proliferation and neointimal hyperplasia in rats' carotid balloon injury model. Reduced expression levels of miR-340 promoted VHL-inhibited VSMCs proliferation. In conclusion, miR-340 may play a role in the regulation of proliferation of VSMCs by inhibition of VHL.


Carotid Artery Injuries/genetics , MicroRNAs/genetics , Myocytes, Smooth Muscle/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Animals , Carotid Artery Injuries/pathology , Cell Proliferation/genetics , Cells, Cultured , Disease Models, Animal , Humans , Male , Muscle, Smooth, Vascular/cytology , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/genetics
17.
J Cell Physiol ; 236(11): 7342-7355, 2021 11.
Article En | MEDLINE | ID: mdl-33928642

Vascular remodeling and restenosis are common complications after percutaneous coronary intervention. Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play important roles in intimal hyperplasia-induced vascular restenosis. NK2 Homeobox 3 (Nkx2-3), a critical member of Nkx family, is involved in tissue differentiation and organ development. However, the role of Nkx2-3 in VSMCs proliferation and migration remains unknown. In this study, we used carotid balloon injury model and platelet-derived growth factor-BB (PDGF)-treated VSMCs as in vivo and in vitro experimental models. EdU assay and CCK-8 assay were used to detect cell proliferation. Migration was measured by scratch test. Hematoxylin and eosin staining and immunohistochemistry staining were used to evaluate the intimal hyperplasia. The autophagy level was detected by fluorescent mRFP-GFP-LC3 in vitro and by transmission electron microscopy in vivo. It was shown that Nkx2-3 was upregulated both in balloon injured carotid arteries and PDGF-stimulated VSMCs. Adenovirus-mediated Nkx2-3 overexpression inhibited intimal hyperplasia after balloon injury, and suppressed VSMCs proliferation and migration induced by PDGF. Conversely, silencing of Nkx2-3 by small interfering RNA exaggerated proliferation and migration of VSMCs. Furthermore, we found that Nkx2-3 enhanced autophagy level, while the autophagy inhibitor 3-MA eliminated the inhibitory effect of Nkx2-3 on VSMCs proliferation and migration both in vivo and in vitro. Moreover, Nkx2-3 promoted autophagy in VSMCs by activating the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway. These results demonstrated for the first time that Nkx2-3 inhibited VSMCs proliferation and migration through AMPK/mTOR-mediated autophagy.


AMP-Activated Protein Kinases/metabolism , Autophagy , Carotid Artery Injuries/enzymology , Cell Movement , Cell Proliferation , Homeodomain Proteins/physiology , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/physiology , Animals , Autophagy/drug effects , Becaplermin/pharmacology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Carotid Artery Injuries/prevention & control , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Homeodomain Proteins/genetics , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/ultrastructure , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/ultrastructure , Neointima , Rats, Sprague-Dawley , Signal Transduction , Transcription Factors/genetics , Vascular Remodeling
19.
Arterioscler Thromb Vasc Biol ; 41(4): 1428-1445, 2021 04.
Article En | MEDLINE | ID: mdl-33626912
20.
Cardiovasc Res ; 117(11): 2395-2406, 2021 09 28.
Article En | MEDLINE | ID: mdl-33508088

AIMS: In-stent restenosis and late stent thrombosis are complications associated with the use of metallic and drug-coated stents. Strategies that inhibit vascular smooth muscle cell (SMC) proliferation without affecting endothelial cell (EC) growth would be helpful in reducing complications arising from percutaneous interventions. SMC hyperplasia is also a pathologic feature of graft stenosis and fistula failure. Our group previously showed that forced expression of the injury-inducible zinc finger (ZNF) transcription factor, yin yang-1 (YY1), comprising 414 residues inhibits neointima formation in carotid arteries of rabbits and rats. YY1 inhibits SMC proliferation without affecting EC growth in vitro. Identifying a shorter version of YY1 retaining cell-selective inhibition would make it more amenable for potential use as a gene therapeutic agent. METHODS AND RESULTS: We dissected YY1 into a range of shorter fragments (YY1A-D, YY1Δ) and found that the first two ZNFs in YY1 (construct YY1B, spanning 52 residues) repressed SMC proliferation. Receptor binding domain analysis predicts a three-residue (339KLK341) interaction domain. Mutation of 339KLK341 to 339AAA341 in YY1B (called YY1Bm) abrogated YY1B's ability to inhibit SMC but not EC proliferation and migration. Incubation of recombinant GST-YY1B and GST-YY1Bm with SMC lysates followed by precipitation with glutathione-agarose beads and mass spectrometric analysis identified a novel interaction between YY1B and BASP1. Overexpression of BASP1, like YY1, inhibited SMC but not EC proliferation and migration. BASP1 siRNA partially rescued SMC from growth inhibition by YY1B. In the rat carotid balloon injury model, adenoviral overexpression of YY1B, like full-length YY1, reduced neointima formation, whereas YY1Bm had no such effect. CD31+ immunostaining suggested YY1B could increase re-endothelialization in a 339KLK341-dependent manner. CONCLUSION: These studies identify a truncated form of YY1 (YY1B) that can interact with BASP1 and inhibit SMC proliferation, migration, and intimal hyperplasia after balloon injury of rat carotid arteries as effectively as full length YY1. We demonstrate the therapeutic potential of YY1B in vascular proliferative disease.


Calmodulin-Binding Proteins/metabolism , Carotid Artery Injuries/therapy , Cell Proliferation , Cytoskeletal Proteins/metabolism , Genetic Therapy , Membrane Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima , Nerve Tissue Proteins/metabolism , Repressor Proteins/metabolism , YY1 Transcription Factor/metabolism , Amino Acid Motifs , Animals , Calmodulin-Binding Proteins/genetics , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Carotid Artery, Common/metabolism , Carotid Artery, Common/pathology , Cattle , Cells, Cultured , Cytoskeletal Proteins/genetics , Disease Models, Animal , Hyperplasia , Membrane Proteins/genetics , Muscle, Smooth, Vascular/injuries , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Nerve Tissue Proteins/genetics , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Rabbits , Rats , Repressor Proteins/genetics , Signal Transduction , YY1 Transcription Factor/genetics
...